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ABSTRACT

The spectrum, ehergy transfer and spectral interactions in steady Burgers turbulence are studied

using numerically generated data. The velocity field is initially random and the turbulence is

maintained steady by forcing the amplitude of a band of low wavenumbers to be invariant in time,

while permitting the phase to change as dictated by the equation. The spectrum, as expected, is

very different from that of Navier-Stokes turbulence. It is demonstrated, for the first time, that

the far range of the spectrum scales as predicted by Burgers (1950, 1974). Despite the difference in

their spectra, in matters of the spectral energy transfer and triadic interactions Burgers turbulence

is similar to Navier-Stokes turbulence.

*This research was supported by the National Aeronautics and Space Administration under NASA Contract No.

NAS1-19480 while the authors were in residence at the Institute for Computer Applications in Science and Engineering

(ICASE), NASA Langley Research Center, Hampton, VA 23681-0001.





1 Introduction.

Burgers equation (Burgers 1950, 1974) describes the behavior of weak shocks in compressible tur-

bulence and is also considered a one-dimensional model of the Navier-Stokes equations. For these

reasons it has received a great deal of attention in the literature. The objective of this paper is to

investigate some of the less explored aspects of the spectrum and spectral energy transfer interac-

tions in numerically generated Burgers turbulence (B-turbulence) which is maintained steady by

low-wavenumber forcing. In particular, we would like to establish the similarities and differences

between B-turbulence and Navier-Stokes turbulence (NS-turbulence) in matters of the energy spec-

trum and spectral energy transfer. Due to the one-dimensional nature of the velocity field, spectral

interactions in B-turbulence are more easily tractable than in NS-turbulence (Domaradzki and

Rogallo, 1990; Yeung and Brasseur, 1991; Okhitani and Kida, 1992; and, Zhou, 1993).

The forced Burgers equation under consideration here is given by

Ou Ou 02_

0---[÷ U-_x = V_x2 ÷ f(x,t), (1)

where v is kinematic viscosity and f(x) is the forcing term. The above equation is solved pseudo-

spectrally (N nodes) with periodic boundary conditions from a random initial velocity field. The

initial velocity field is specified in the spectral space (_)(k, 0)) as follows:

{ Ck -_ for ki <_ k <_ k/_(k, 0) = 0 for other k, (2)

where k is the wavenumber and n, C, ki and ky are specified values. The phase of each wavenumber

is assigned a random value in the range (0, 27r). Forcing is performed in the spectral space as follows.

At the end of each time step, the amplitudes of wavenumbers in the range (k_, k f) are reset to their

value at the initial time: that is, fi(k, t) = Ck -'_. The phases associated with these wavenumbers

are as determined by the Burgers equation. As for the other wavenumbers, both the amplitude

and phase evolve by the Burgers equation. This manner of forcing leads to steady (time-invariant)

spectrum and velocity field after an initial transient (period of time). All the results presented below

(except those demonstrating the inverse cascade) are calculated after the velocity field reaches a

steady state. The values of the parameters for the various cases studied are given in the Table.

Simulations are performed for three different values of n(= 0, 1/2, 1). The turbulence is forced in

the above fashion in the wavenumber range (1, 20). For all the cases given in the table, n = 1.



2 Background.

The classical picture of the NS-turbulence is the following. The turbulent kinetic energy is produced

due the interaction between the fluctuating and the mean velocity field at scales of motion classified

as the energy containing scales. This energy is then cascaded down (due to triadic interactions)

to smaller scales of motion called the inertial scales. There is no production or viscous dissipation

of kinetic energy in these scales. The amount of energy cascaded down the inertial scales is given

the name spectral energy transfer rate. The kinetic energy is then cascaded down (again by triadic

interactions) from the inertial scales to even smaller scales of motion called the dissipation scales.

In these scales, viscous action dissipates the kinetic energy. According to the Kolmogorov (1941)

hypothesis, the inertial range can be completely characterized by the spectral energy transfer rate

and the dissipative scales by the energy dissipation rate and viscosity. In steady state turbulence,

the spectral energy transfer rate is equal to the dissipation rate (e) of the turbulent kinetic energy.

This leads to the following spectral behavior in the inertial range

~ Esk- . (3)E(k) 2

The functional form of the spectrum in the dissipation range has been established only recently

using DNS (eg., Kida and Murakami 1987, Sanada 1992, Zhou 1993, Chen et al 1993):

E(k) ~ exp(- Vk), (4)

t/3 1

where, _?= [-7-]7 and /3 is a constant between 5 and 10.

The spectrum of the Burgers velocity field also exhibits three distinct regimes which for historical

reasons will again be called the energy containing range, the inertial range and the dissipation range

(Kida, 1981). If the classical picture of NS turbulence is accurate for B-turbulence also, then the

Kolmogorov hypothesis would lead to a spectrum similar to that of NS turbulence. However,
5

it is known from experience that the inertial range spectrum certainly does not scale as k-5.

Several authors (Burger 1950, Saffman 1968) have suggested a different picture of B-turbulence

dynamics that yields the correct (observed) inertial range spectral behavior. Several other aspects

of the suggested B-turbulence picture are yet unverified. Also, the nature of the spectral triadic

interactions, which may shed more light on tile spectral behavior, is yet unexplored. We first



briefly presentsomeresultsfrom the analysisof Burgers(1950,1974)and Saffman(1968)and

then proceedto interrogatethe numericallygeneratedBurgersvelocityfield. Comparisons with

the NS-turbulence behavior will be made wherever possible.

Qualitative description of Burgers turbulence. The Burgers velocity field is composed of a

series of discrete viscous shocks. For a periodic train of shocks, it can be shown (Saffman 1968)

that the velocity jump (V) across the shock is given by

(5)

where K and u_ms are the kinetic energy and the root mean square of the velocity field. The

characteristic shock thickness is of the order

41/

d_-, t-=. (6)

The shock structure can be completely parametrized in terms V and the shock separation length

L, which is approximately the velocity auto-correlation length scale. All of the dissipation occurs

inside these viscous shocks. The smallest length scales (dissipation scales) are of the order of the

shock thickness, d. The small scale statistics of the velocity field are governed by the inner shock

structure. Analysis of the shock structure yields the following: the dissipation rate is given by

"_f3

24L' (7)

and, the dissipation-range spectrum has the form

E(k)- 2uZrCexp( rCUk
L -_ ")' (8)

It is clear then that, as in NS turbulence, the kinetic energy dissipation rate (e) is independent

of viscosity. However. unlike NS turbulence where the small scales are completely characterized

by e and u, the small structure of B-turbulence is determined by V and L which are large scale

parameters.

In the classical Burgers equation analysis, the inertial-range scales (k/ << k << _, where kf

is the largest forced wavenumber) are treated as inviscid. The inner shock structure is deemed

unimportant for determining the statistics of these scales. For the purpose of analyzing these



inertial scales,thefinite-thicknessviscousshocksaretreatedasinfinitesimallythin discontinuities

in thevelocityfield. Thesesimplifications,then,leadto the wellknownspectrumof a collectionof

discontinuitiesfor the inertial range

E(k) ~ k -2. (9)

3 Results.

Inertial-range spectrum. Although the inertial-range behavior of the Burgers spectrum is well

established in previous studies, we present the spectra from our computations here to demonstrate

the validity of our forcing technique and the numerics. For all the values of the initial spectrum

exponent (n) considered, the energy spectrum of the numerically generated velocity field does yield

a k -2 behavior in the inertial range. The spectrum exhibits the smoothest characteristics for n = 1,

which corresponds to E(k) _ k -2 in the forced range. In fact, for this value of n, the boundary

between the forced range and the inertial range is indistinguishable. The compensated spectra

computed from various simulations (with n = 1, but different Reynolds numbers characterized by

different values of C and u) are shown in figure 1. The so-called compensated spectrum is obtained

by pre-multiplying the the energy spectrum by k 2. The compensated spectra for the various

simulations are flat for over a decade past the forcing scales, demonstrating the k -2 behavior in

the inertial range.

Dissipation-range spectrum. The spectral behavior in the dissipation range (of B-turbulence)

is yet unexamined in the numerical studies in literature. We now compare the theoretically predicted

spectrum given in equation (8) with simulation data. In figure 2b, the results of the simulations

are shown in a log-linear plot with the energy spectrum and wavenumber normalized with the

scaling shown in equation (8). The various spectra collapse very well along a (-1)-slope line,

indicating good agreement between theory and simulations. For the sake of comparison, the degree

of agreement between the simulation data and Kolmogorov scaling (equation 4) is also investigated.

In figure 2a, a log-linear plot of the energy spectra is provided with the wavenumber normalized by

r/, the Kolmogorov length scale. As can be seen from the figure, the collapse of the various spectra

is poor. This is to be expected since, unlike in the case of NS-turbulence, the dissipation rate and

viscosity do not exclusively determine the statistical behavior of small scales in B-turbulence.



Spectral energy transfer budget. In spectral space, the Burgers equation for the unforced

wavenumbers can be written as

Ot - Ot - T(k)- D(k). (10)

The term D(k) - 2vk2E(k) represents the rate at which energy is dissipated by wavenumber k.

The net rate at which energy is input into wavenumber k is given by T(k) = _p,_ T(k,p, q) with

T( k, p, q ) = -it: × Iro[ft'( k )fi(p)ft( q)]5( k - p - q) (11)

= -ik × -p)]- T(k,p).

In the above equations, superscript * and Im represent the complex conjugate and imaginary parts

of a complex number, and 6() stands for the Dirac delta function. The term T(k, p, q) is the energy

transfer into wavenumber k due to the triadic interaction between the wavenumbers k, p and q. A

positive value of T(k,p,q)indicates that the triadic interaction adds energy to the wavenumber k

and a negative value denotes removal of energy.

The spectral energy transfer equation in incompressible Navier-Stokes turbulence looks exactly

similar to that of B-turbulence (equation 10) with two exceptions: (i) the wavenumbers k, p and q

are vectors rather than scalars; and (ii) the triadic energy transfer function is given by

1
T(k, p, q) = - _ilm[Pabc(k)fia(k)fib(p)fle(q)]6(k - p - q), (12)

where

P_bc(k) = kb(_c - k---T) + kc(_ab -- k--_). (13)

In stationary isot.ropic NS-turbulence and in steady B-turbulence, the spectral transfer term

T(k) and thedissipation term D(k) balance one another other at each wavenumber. In Navier-

Stokes turbulence, the magnitude of D(k) (and hence that of T(k)) is small in the inertial range

increasing to a peak in the dissipation range before ultimately going to zero at higher wavenumbers.

The spectral energy budget of B-turbulence (at the non-forced wavenumbers) is shown in figure

3a. The behavior of D(k) in this case is completely different, from that in NS-turbulence. The

magnitude of D(k) (and hence of T(k)) is almost constant at a high value in the inertial range

and then decays monotonically to zero in the dissipation range. That is, unlike NS-turbulence.

turbulent kinetic energy is dissipated by inertial range scales also, at a rate larger than that of the



so-called'dissipationrange'scales.This is clearly the reasonwhy, unlikein NS-turbulence,the

dissipationrateof turbulentkineticenergye (or the spectra] transfer rate) cannot solely determine

the state of inertial range. This behavior gives rise to an important question: how is it that the

inviseid analysis predicts the correct behavior of the spectrum in the inertial range, and yet, viscous

dissipation rate of the inertial range is larger than that in the dissipation range? To address this

question we examine the behavior of two quantities T+(k) and T-(k) defined as

T+(k) = _ rnax{T(k,p,q),O}; T-(k) = _ min{T(k,p,q),O}, (14)
P,q P,q

leading to T(k) = T+(k) + T-(k). _From the definitions it is clear that T+(k) is the energy influx,

T-(k) is the energy effiux, and T(k) is the net energy flux into k from all of the triadic interactions.

Also from the definition, it is seen that the spectral energy transfer rate l-I(k) = IT-(k)l. The

quantities T +, T- and T are given in figure 3b as a function of k. The magnitudes of T+(k) and

T-(k) suffer a substantial monotonic decay in the inertial range. Despite the decay, the magnitudes

of T + and T- in the inertial range of B-turbulence are sitll much larger than that of T(k) and,

hence, that of D(k). Therefore, although the dissipation (D(k)) in the inertial range is larger than

that in the far range, the D(k) in the inertial range is very small compared to the magnitudes of

energy influx and efflux. As a result, the treatment of the inertial scales as inviscid is a reasonable

appro_mation. In the far range, the magnitudes of D(K), T+(k) and T-(k) are nearly equal, and

hence, viscous effects are as important as triadic energy transfer or the non-linear effect.

The demonstrated behavior of T + and T- in the inertial range of B-turbulence is very different

from that in NS-turbulence where one would expect to see T+(k) = T-(k) "_ Constant, resulting

in the spectral transfer rate being equal to the total dissipation rate.

Are the above differences between B-turbulence and NS-turbulence reflected in the nature of

triadic interactions? In order to answer this question, we examine the spectral energy transfer and

locality of the most intense and most net-energy-transfer triadic interactions.

Spectral energy transfer. The nature of spectral energy transfer is best understood by ex-

amining the function T(k, p) - _q T(k, p, q). The net energy transfer from a wavenumber p to a

wavenumber/_" is given by T(k, p). A negative value of T(k,p)indicates net energy transfer from k

to p, whereas a positive value indicates a net transfer of energy from p to k. In figure 4a, T(k, p)

6



is shownasfunctionof k for a value of p = 50 which is in the inertial range. (In B-turbulence, due

to one-dimensionality of the problem, we have T(k,p) = T(k,p,q), where q = k - p.) The value

of T(k,p) is negative for all k < p. At small k. values T(k,p) is small in magnitude. It decreases

monotonically to a minimum at k = p- 1. Forp = k, T(k,p) is zero. For all k > p, T(k,p) is

positive. It has the highest value for k = p + 1, and then decreases monotonically to zero for higher

k values. Similar behavior is observed for all non-forced p values examined {figures not shown).

From the figure shown, the following picture of the energy transfer emerges. A given scale of motion

draws energy from larger scales. The highest energy is drawn from the scale that is the next larger

size. Energy is then lost to smaller scales. The most energy is lost to the scale that is the next

smaller size. This type of energy flow from large to small scales in a continuous manner is given the

name 'energy cascade'. The behavior of T(k,p) in NS-turbulence (Domaradzki and RogaHo 1990,

Ohkitani and Kida 1992, Yeung and Brasseur 1991, and Zhou 1993) is quite similar to that shown

in Figure 4a. Therefore, the conclusion from figure 4a is, the energy transfer in B-turbulence is

local in wavenumber space, implying energy cascade, as is the case in NS-turbulence.

Locality of the energetic triadic interactions. The energy transfer between wavenumbers k

and p occurs due to the interaction between three wavenumhers: k, p and q. Often, it is of interest

to know if a particular triadic interaction is local or non-local in nature. LocM interactions are

interactions between three neighbouring wavenumbers that are of similar magnitude. Non-local

interactions invovle wavenumbers of vastly disparate magnitudes. One of the most commonly used

metrics of the locality of the interaction between a given set of wavenumbers is the scale disparity

parameter S(k,p, q):

rnax{k,p,q} max{k,p,k- p}

5'(k,p,q)= rnin{k,p,q}'= rnin{k,p,k p}'-S(k'P)" (15)

Small values of S (< 20, approximately) indicate local triadic interactions and larger values indicate

distant or non-local interactions (Zhou 1993).

Presented in figure 4b are the S values of the triadic interactions that produce the energy transfer

shown in figure 4a. The values of the j wavenumber participating in the triadic interactions are also

shown in figure 4b. LFrom figure 4a, it is clear that the energy transfer between wavenumber p = 50

and its neighboring k values are the most intense. This intense energy transfer is brought about due



to the triadic interactionbetweenk _ 50, p = 50 and q = k-p _ 1. The scale disparity parameter

corresponding to these intense interactions is 5" ,_ 50. For all values of p considered (figures not

shown), the scale disparity parmeter for the most intense triadic interactions is S _ p. Clearly,

the most energetic triadic interactions always will involve the small wavenumbers or the large

scales. Hence, the most energetic interactions in B-turbulence are non-local, as in NS turbulence

(Domaradzki and Rogallo 1990, Ohkitani and Kida 1992, Yeung and Brasseur 1991, and Zhou

1993).

Locality of the highest net-energy-transfer interactions. In NS-turbulence, while some

distant interactions transfer large amounts of energy into a wavenumber, other distant interactions

remove equally large amounts of energy from that wavenumber. As a result, when the contributions

of all the distant interactions are added up, the net energy transfer into any wavenumber is very

small. Dynamically significant amounts of net energy transfer into the inertial scales come from local

interactions (Zhou 1993). In NS-turbulence, this realization is crucial for reconciling the observed

non-locality of the most energetic interactions with the Kolmogorov 1941 hypothesis, which hinges

on the assumption that only local triadic interactions are important in the inertial range. We now

examine if the net energy transfer in B-turbulence is from local or distant interactions. The net

energy transfer into a wavenumber k from interactions of a particular locality S is given by,

T(k, S) = _ T(k,p,q)6[S - S(k,p,q)]. (16)
P,q

Rather than considering contributions from individual S values, net energy transfer to wavenumber

k from logarithmic bands of S values are considered:

s=2n+l

T(k, Sn)= _ T(k,S). (17)
S=2 n

In figure5, the net energy transferfrom each S-band (as a percentageof the totalnet energy

transfer)intoa wavenumber k isplottedas a functionof the centralS valueof the band. Four

differentk values(75,I00,200. 500) locatedin inertia]and dissipationranges are considered.In

each case,more than 50% of the net energy transferisfrom S valuesunder four.More than 80%

of the net energy transferisfrom localtriadicinteractions(S < 20).The conclusionfrom figure.5

is,then,as in NS-turbu]ence,the localinteractionstransfermost net energy.

8



Inverse Cascade. It has long been known that three-dimensional NS-turbulence does not permit

the inverse cascade of energy from small scales to large scales, whereas, two-dimensional turbulence

does (Kraichnan 1967, Pouquet et al 1975). The analysis of Kraichnan (1968) indicates that the

Burgers equation may permit inverse cascade, which, we now attempt to verify using numerically

generated data. We perform a simulation with no forcing and with the initial field specified ac-

cording to equation (2) with n = l, ki = 21 and kf = 50. All wavenumbers outside the range

(21.50) are initially unenergetic. The evolution of the spectrum of this decaying velocity field is

shown in figure 6. _As the initial field evolves according to the Burgers equation, all wavenumber

modes, those smaller and larger than the initially energetic ones, acquire kinetic energy very rapidly.

Hence, the energy transfer from the initially energetic scales to larger scales is evident. After this

rapid transient stage, the spectrum decays with no more evidence of inverse energy transfer. With

time, the larger wavenumbers dissipate their energy more rapidly than the smaller ones. In fact,

during the later stages of decay, only the k < 20 nodes are energetic.

The rapid acquisition of energy by large scales (k < 20) is a unequivocal demonstration of

inverse energy transfer. However, it is not at all clear if this transfer happens in the form of a

cascade, a question which can be answered only by analyzing the triadic interactions. The analysis

of the triadic interactions during inverse transfer is rendered difficult by the fleeting nature of that

process and is deferred to a future study. After the initial transient period, the direction of energy

transfer is from large to small scales and the nature of the triadic interactions at this stage is similar

to that discussed in detail in figures 3 - 5.

4 Summary and Conclusion.

Using numerically generated B-turbulence data it has been established that: (i) in the inertial

range, the spectrum scales as k-2: (ii) in the dissipation range, the large scale parameters L and

1 _ collapse the spectra very well; (iii) although the inertial range scales dissipate turbulent kinetic

energy more rapidly than the far range, inviscid analysis still yields an accurate scaling of the

inertial range spectra; (iv) energy transfer is local in spectral space; (v) the triadic interactions

causing the most energetic transfers are distant; and (vi) the triadic interactions causing most net

energy tranfer are local. On the whole, the spectral energy transfer and triadic interactions in



Burgersturbulencearequite similar to thosein NSturbulence,despitemajor differencesin the

mechanics(spectralscalingin the inertial andfar ranges)of the twoequations.
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Table

\k )/
1 i 14 1 20 2 .01 1.09 62.19 2.55 1.i14

2 214 1 20 2 .005 1.09 121.22 2.56 1.149
3 214 1 20 3 .01 1.25 206.00 3.87 1.174
4 2 t5 1 20 5 .01 3.40 947.34 6.40 1.151

u o 71

0.2808 0.0356

0.2346 0.0213

0.3788 0.0264
0.5547 0.0180
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(0), 100 ([:3), 200 (A) and 500 (+).
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Figure 6: Inverse cascade demonstration. Spectrum of decaying Burgers field at various times. For

this case k_ = 20, k/ = .50, C = 1 and v = 0.02 and no forcing. The various times are: t=0 (solid
line); t=.06 (--); t=3 (--); and, t=15 (- -).
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